Result: An FPTAS for quickest multicommodity flows with inflow-dependent transit times
Institut für Mathematik, TU Berlin, Straße des 17 Juni 136, 10623 Berlin, Germany
Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Computer science; theoretical automation; systems
Further Information
Given a network with capacities and transit times on the arcs, the quickest flow problem asks for a flow over time that satisfies given demands within minimal time. In the setting of flows over time, flow on arcs may vary over time and the transit time of an arc is the time it takes for flow to travel through this arc. In most real-world applications (such as, e.g., road traffic, communication networks, production systems, etc.), transit times are not fixed but depend on the current flow situation in the network. We consider the model where the transit time of an arc is given as a non-decreasing function of the rate of inflow into the arc. We prove that the quickest s-t-flow problem is NP-hard in this setting and give various approximation results, including a fully polynomial time approximation scheme (FPTAS) for the quickest multicommodity flow problem with bounded cost.