Treffer: Coupling stochastic and deterministic local search in examination timetabling

Title:
Coupling stochastic and deterministic local search in examination timetabling
Source:
Operations research. 55(2):351-366
Publisher Information:
Linthicum, MD: Institute for Operations Research and the Management Sciences, 2007.
Publication Year:
2007
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Ingegneria dell'Impresa, University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
Dipartimento di Statistica, Probabilità e Statistiche Applicate, University of Rome La Sapienza, Piazzale Aldo Moro, 5, 00185 Rome, Italy
ISSN:
0030-364X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Operational research. Management
Accession Number:
edscal.18717778
Database:
PASCAL Archive

Weitere Informationen

In this paper, we propose a novel optimization algorithm for examination timetabling. It works by alternating two phases; one based on a stochastic local search and the other on a deterministic local search. The stochastic phase is fundamentally based on biased random sampling that iteratively constructs schedules according to a matrix whose entries are the probability with which exams can be assigned to time slots. The deterministic phase, instead, consists of assigning (according to a given ordering) each exam sequentially to the time slot that causes the lowest increase in the schedule penalty. After a schedule is constructed, swap operations are executed to improve performance. These two phases are coupled and made closely interactive by tunnelling information on what has happened during one phase to the successive ones. Moreover, the length of a phase and the parameter framework to be used in a new phase are automatically determined by a record of the process. We tested the proposed technique on known benchmarks, and a comparison with 17 algorithms drawn from the state of the art appears to show that our algorithm is able to improve best-known results. In particular, in reference to uncapacitated problems, i.e., the ones without room constraints, our algorithm bested the state of the art in 70% to 90% of the tested instances, while in capacitated problems with overnight conflicts (second-order conflicts), it was superior to all the other algorithms.