Treffer: The bidimensional theory of bounded-genus graphs

Title:
The bidimensional theory of bounded-genus graphs
Source:
SIAM journal on discrete mathematics (Print). 20(2):357-371
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2007.
Publication Year:
2007
Physical Description:
print, 1 p.1/2
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Théorie des graphes, Graph theory, Algèbre, Algebra, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Recherche information. Graphe, Information retrieval. Graph, Algorithmique, Algorithmics, Algorítmica, Application, Aplicación, Boucle réaction, Feedback, Retroalimentación, Ensemble dominant, Dominating set, Conjunto dominando, Grille, Grid, Rejilla, Maillage, Grid pattern, Celdarada, Mathématiques discrètes, Discrete mathematics, Matemáticas discretas, Méthode optimisation, Optimization method, Método optimización, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Problème combinatoire, Combinatorial problem, Problema combinatorio, Prototype, Prototipo, Racine carrée, Square root, Raíz cuadrada, Théorie graphe, Graph theory, Teoría grafo, Vertex, Vértice, 05Cxx, 49XX, 65Kxx, 68R10, 68Wxx, Algorithme combinatoire, Combinatorial algorithm, Concordance maximale, Contraction arbre, Ensemble contour, Edge set, Mineur graphe, 05C83, 05C85, graph contractions, graph minors, graphs on surfaces, grids, treewidth
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139, United States
Department of Mathematics, National and Capodistrian University of Athens, Panepistimioupolis, 15784. Athens, Greece
ISSN:
0895-4801
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.18732458
Database:
PASCAL Archive

Weitere Informationen

Bidimensionality provides a tool for developing subexponential fixed-parameter algorithms for combinatorial optimization problems on graph families that exclude a minor. This paper extends the theory of bidimensionality for graphs of bounded genus (which is a minor-excluding family). Specifically we show that, for any problem whose solution value does not increase under contractions and whose solution value is large on a grid graph augmented by a bounded number of handles, the treewidth of any bounded-genus graph is at most a constant factor larger than the square root of the problem's solution value on that graph. Such bidimensional problems include vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating set, r-dominating set, connected dominating set, planar set cover, and diameter. On the algorithmic side, by showing that an augmented grid is the prototype bounded-genus graph, we generalize and simplify many existing algorithms for such problems in graph classes excluding a minor. On the combinatorial side, our result is a step toward a theory of graph contractions analogous to the seminal theory of graph minors by Robertson and Seymour.