Treffer: Space-time discontinuous Galerkin finite element method for shallow water flows
Title:
Space-time discontinuous Galerkin finite element method for shallow water flows
Authors:
Source:
The seventh international conference on mathematical and numerical aspects of waves (WAVES'05)Journal of computational and applied mathematics. 204(2):452-462
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 10 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Analyse fonctionnelle, Functional analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse numérique, Numerical analysis, Análisis numérico, Eau peu profonde, Shallow water, Agua poco profunda, Equation non linéaire, Non linear equation, Ecuación no lineal, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode Galerkin, Galerkin method, Método Galerkin, Méthode numérique, Numerical method, Método numérico, Méthode élément fini, Finite element method, Método elemento finito, Oscillation, Oscilación, Polynôme, Polynomial, Polinomio, Solution exacte, Exact solution, Solución exacta, Solution numérique, Numerical solution, Temps linéaire, Linear time, Tiempo lineal, Temps polynomial, Polynomial time, Tiempo polinomial, 46Axx, 49M15, Méthode Galerkin discontinue, Discontinuous Galerkin method, 35L65; 65M60, Shallow water equations; Discontinuous Galerkin finite element methods; Discontinuity detector; Numerical dissipation
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Numerical Analysis and Computational Mechanics Group, Department of Applied Mathematics, University of Twente. P.O. Box 217, Enschede, Netherlands
ISSN:
0377-0427
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18782978
Database:
PASCAL Archive
Weitere Informationen
A space-time discontinuous Galerkin (DG) finite element method is presented for the shallow water equations over varying bottom topography. The method results in nonlinear equations per element, which are solved locally by establishing the element communication with a numerical HLLC flux. To deal with spurious oscillations around discontinuities, we employ a dissipation operator only around discontinuities using Krivodonova's discontinuity detector. The numerical scheme is verified by comparing numerical and exact solutions, and validated against a laboratory experiment involving flow through a contraction. We conclude that the method is second order accurate in both space and time for linear polynomials.