Treffer: On k-planar crossing numbers

Title:
On k-planar crossing numbers
Source:
Advances in graph drawing; The 11th International Symposium on Graph DrawingDiscrete applied mathematics. 155(9):1106-1115
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science. University of North Texas, P.O. Box 13886, Denton, TX 76203-3886, United States
Department of Computer Science. Loughborough University, Loughborough, LE1 13TU, United Kingdom
Department of Mathematics, University of South Carolina, Columbia, SC 29208, United States
Institute of Mathematics, Slovak Academy of Sciences, Duthravská 9, 841 04 Bratislava, Slovakia
ISSN:
0166-218X
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.18788145
Database:
PASCAL Archive

Weitere Informationen

The k-planar crossing number of a graph is the minimum number of crossings of its edges over all possible drawings of the graph in k planes. We propose algorithms and methods for k-planar drawings of general graphs together with lower bound techniques. We give exact results for the k-planar crossing number of K2k+1.q, for k≥2. We prove tight bounds for complete graphs. We also study the rectilinear k-planar crossing number.