Result: Drawing c-planar biconnected clustered graphs
Title:
Drawing c-planar biconnected clustered graphs
Authors:
Source:
Advances in graph drawing; The 11th International Symposium on Graph DrawingDiscrete applied mathematics. 155(9):1155-1174
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Recherche information. Graphe, Information retrieval. Graph, Algorithme, Algorithm, Algoritmo, Combinatoire, Combinatorics, Combinatoria, Contour, Contorno, Etirage, Drawing, Estiramiento, Graphe planaire, Planar graph, Grafo planario, Informatique théorique, Computer theory, Informática teórica, Optimisation, Optimization, Optimización, Plan, Plane, Plano, Polygone convexe, Convex polygon, Polígono convexo, Segment droite, Line segment, Segmento recta, Sous graphe, Subgraph, Subgrafo, 68R10, 68Wxx, Graphe biconnexe, Polygon convexe, Clustered graph, Divide-and-conquer, Graph drawing
Document Type:
Conference
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Sakyo, Kyoto 606-8501, Japan
Hitachi Advanced Digital, Inc., 292 Yoshida-cho, Totsuku-ku, Yokohama 244, Japan
Hitachi Advanced Digital, Inc., 292 Yoshida-cho, Totsuku-ku, Yokohama 244, Japan
ISSN:
0166-218X
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Mathematics
Mathematics
Accession Number:
edscal.18788148
Database:
PASCAL Archive
Further Information
In a graph, a cluster is a set of vertices, and two clusters are said to be non-intersecting if they are disjoint or one of them is contained in the other. A clustered graph C consists of a graph G and a set of non-intersecting clusters. In this paper, we assume that C has a compound planar drawing and each cluster induces a biconnected subgraph. Then we show that such a clustered graph admits a drawing in the plane such that (i) edges are drawn as straight-line segments with no edge crossing and (ii) the boundary of the biconnected subgraph induced by each cluster is a convex polygon.