Result: Time domain model of plunge milling operation

Title:
Time domain model of plunge milling operation
Source:
Selected papers from the 2nd International Conference on High Performance CuttingInternational journal of machine tools & manufacture. 47(9):1351-1361
Publisher Information:
Oxford: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Subject Terms:
Mechanical engineering, Génie mécanique, Metallurgy, welding, Métallurgie, soudage, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Dynamique des solides (balistique, collision, système n corps, stabilisation...), Solid dynamics (ballistics, collision, multibody system, stabilization...), Mécanique des structures et des milieux continus, Structural and continuum mechanics, Vibration, onde mécanique, stabilité dynamique (aéroélasticité, contrôle vibration...), Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...), Sciences appliquees, Applied sciences, Genie mecanique. Construction mecanique, Mechanical engineering. Machine design, Généralités, General, Broutage machine, Chatter, Chirrido, Broutement, Stick slip, Deslizamiento a tirones, Cavité, Cavity, Cavidad, Charge axiale, Axial load, Carga axial, Charge dynamique, Dynamic load, Carga dinámica, Distribution charge, Load distribution, Distribución carga, Dynamique processus, Process dynamics, Dinámica proceso, Dégrossissage, Rough machining, Debaste, Etude expérimentale, Experimental study, Estudio experimental, Force axiale, Axial force, Fuerza axial, Force coupe, Cutting force, Fuerza corte, Mesure force, Force measurement, Medición esfuerzo, Modèle dynamique, Dynamic model, Modelo dinámico, Modélisation, Modeling, Modelización, Méthode domaine temps, Time domain method, Método dominio tiempo, Rainure, Groove, Ranura, Régénération, Regeneration, Regeneración, Système paramètre variable, Time varying system, Sistema parámetro variable, Vibration flexion, Bending vibration, Vibración flexión, Vibration longitudinale, Longitudinal vibration, Vibración longitudinal, Vibration torsion, Torsional vibration, Vibración torsión, Vibromètre, Vibrometer, Vibrómetro, Fraisage en plongée, Plunge milling, Fresado por penetración
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
The University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
ISSN:
0890-6955
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mechanical engineering. Mechanical construction. Handling

Physics: solid mechanics
Accession Number:
edscal.18791295
Database:
PASCAL Archive

Further Information

Plunge milling operations are used to remove excess material rapidly in roughing operations. The cutter is fed in the direction of spindle axis which has the highest structural rigidity. This paper presents time domain modeling of mechanics and dynamics of plunge milling process. The cutter is assumed to be flexible in lateral, axial, and torsional directions. The rigid body feed motion of the cutter and structural vibrations of the tool are combined to evaluate time varying dynamic chip load distribution along the cutting edge. The cutting forces in lateral and axial directions and torque are predicted by considering the feed, radial engagement, tool geometry, spindle speed, and the regeneration of the chip load due to vibrations. The mathematical model is experimentally validated by comparing simulated forces and vibrations against measurements collected from plunge milling tests. The study shows that the lateral forces and vibrations exist only if the inserts are not symmetric, and the primary source of chatter is the torsional-axial vibrations of the plunge mill. The chatter vibrations can be reduced by increasing the torsional stiffness with strengthened flute cavities.