Treffer: Analysis and avoidance of singularities for local G1 surface interpolation of Bézier curve network with 4-valent nodes
Title:
Analysis and avoidance of singularities for local G1 surface interpolation of Bézier curve network with 4-valent nodes
Source:
Special issue on geometric modeling (Dagstuhl 2005)Computing (Wien. Print). 79(2-4):261-279
Publisher Information:
Wien: Springer, 2007.
Publication Year:
2007
Physical Description:
print, 23 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Approximations et développements, Approximations and expansions, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Approximation numérique, Numerical approximation, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Algorithme, Algorithm, Algoritmo, Analyse numérique, Numerical analysis, Análisis numérico, Approximation numérique, Numerical approximation, Aproximación numérica, Calcul scientifique, Scientific computation, Computación científica, Courbe Bézier, Bézier curve, Curva Bézier, Fonction poids, Weight function, Función peso, Interpolation, Interpolación, Surface, Superficie, 41A05, 65D05, 53A05, 65D17.; G1 continuity, Bézier surfaces, curve network interpolation, singular analysis
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Research Institute of Marine Systems Engineering Seoul National University, Seoul 151-741, Korea, Republic of
Department of Naval Architecture and Ocean Engineering and Research Institute of Marine Systems Engineering Seoul National University, Seoul 151-741, Korea, Republic of
Department of Naval Architecture and Ocean Engineering and Research Institute of Marine Systems Engineering Seoul National University, Seoul 151-741, Korea, Republic of
ISSN:
0010-485X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Mathematics
Mathematics
Accession Number:
edscal.18791835
Database:
PASCAL Archive
Weitere Informationen
We propose a local method of constructing piecewise G1 Bézier patches to span a Bézier curve network with odd- and 4-valent node points. We analyze all possible singular cases of the G condition that is to be met by the curve network interpolation and propose a new G1 continuity condition using linear and quartic scalar weight functions. Using this condition, a curve network can be interpolated without modification at 4-valent nodes with two collinear tangent vectors, even in the presence of singularities. We demonstrate our approach by generating G1 surfaces over the curve network which includes singularities at its node vertices and edges.