Treffer: Brillouin light scattering from porous silicon films and multilayers

Title:
Brillouin light scattering from porous silicon films and multilayers
Source:
Physica status solidi. A, Applications and materials science (Print). 204(5):1372-1377
Publisher Information:
Berlin: Wiley-VCH, 2007.
Publication Year:
2007
Physical Description:
print, 10 ref
Original Material:
INIST-CNRS
Subject Terms:
Crystallography, Cristallographie cristallogenèse, Electronics, Electronique, Nanotechnologies, nanostructures, nanoobjects, Nanotechnologies, nanostructures, nanoobjets, Condensed state physics, Physique de l'état condensé, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Etat condense: structure, proprietes mecaniques et thermiques, Condensed matter: structure, mechanical and thermal properties, Dynamique réticulaire, Lattice dynamics, Phonons dans les structures de basse dimensionnalité et dans les particules fines, Phonons in low-dimensional structures and small particles, Surfaces et interfaces; couches minces et trichites (structure et propriétés non électroniques), Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties), Propriétés physiques non électroniques de couches minces, Physical properties of thin films, nonelectronic, Propriétés mécaniques et acoustiques, Mechanical and acoustical properties, Etat condense: structure electronique, proprietes electriques, magnetiques et optiques, Condensed matter: electronic structure, electrical, magnetic, and optical properties, Propriétés optiques, spectroscopie et autres interactions de la matière condensée avec les particules et le rayonnement, Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation, Propriétés optiques des couches minces, Optical properties of specific thin films, Angle incidence, Incidence angle, Constante élasticité, Elastic constants, Couche mince, Thin films, Diffusion lumière, Light scattering, Epaisseur, Thickness, Matériau poreux, Porous materials, Microscopie électronique balayage, Scanning electron microscopy, Microstructure, Multicouche, Multilayers, Onde Rayleigh, Rayleigh waves, Onde acoustique, Acoustic waves, Phonon surface, Surface phonons, Porosité, Porosity, Raie antistokes, Antistokes lines, Silicium, Silicon, Spectre Brillouin, Brillouin spectra, Si
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
Research Institute for Technical Physics and Materials Science MFA, P.O. Box 49, 1525 Budapest, Hungary
ISSN:
1862-6300
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics of condensed state: electronic structure, electrical, magnetic and optical properties

Physics of condensed state: structure, mechanical and thermal properties
Accession Number:
edscal.18791911
Database:
PASCAL Archive

Weitere Informationen

Porous silicon films and multilayers were studied using Brillouin spectroscopy. Acoustic wave velocities and elastic constants were determined for films with porosity∼0.60 formed from p-, p+ and n+ crystalline silicon. The velocities and elastic constants depend on the pore/crystallite geometry and morphology. Porous silicon multilayers were fabricated from (100) p+ crystalline silicon. For a multilayer with 250 nm layer thickness and layer porosity sequence of 0.45/0.65/0.45/0.65/0.45, the Rayleigh surface phonon velocity was found to be 2850 m/s. The origin(s) of other peaks in the multilayer spectra are unknown but it is unlikely that they are surface modes because their shift(s) are independent of incident angle.