Treffer: Ulam's problem for approximate homomorphisms in connection with Bernoulli's differential equation
Title:
Ulam's problem for approximate homomorphisms in connection with Bernoulli's differential equation
Authors:
Source:
Proceedings of the International Symposium on Analytic Function Theory, Fractional Calculus and Their Applications in honour of Professor H.M. Srivastava on his sixty-fifth birth anniversaryApplied mathematics and computation. 187(1):223-227
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 11 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Fonctions spéciales, Special functions, Equations différentielles, Ordinary differential equations, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse numérique, Numerical analysis, Análisis numérico, Equation différentielle, Differential equation, Ecuación diferencial, Fonction exponentielle, Exponential function, Función exponencial, Homomorphisme, Homomorphism, Homomorfismo, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Problème Bernoulli, Bernoulli problem, Problema Bernoulli, Stabilité numérique, Numerical stability, Estabilidad numérica, 33B10, 34XX, 58A10, Bernoulli's differential equation, Generalized Hyers-Ulam stability, Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Stability, Ulam's problem
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Mathematics Section, College of Science and Technology, Hong-Ik University, Chochiwon 339-701, Korea, Republic of
Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18796505
Database:
PASCAL Archive
Weitere Informationen
Ulam's problem for approximate homomorphisms and its application to certain types of differential equations was first investigated by Alsina and Ger. They proved in [C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998) 373-380] that if a differentiable function f : I →R satisfies the differential inequality |y'(t) - y(t)|≤ ε, where I is an open subinterval of R, then there exists a solution f0: I→ R of the equation y'(t) = y(t) such that |f(t) - f0(t)| ≤ 3ε for any t ∈ I. In this paper, we investigate the Ulam's problem concerning the Bernoulli's differential equation of the form y(t)-αy'(t)-αy'+g(t)y(t)1-α+h(t)=0.