Result: α-Analytic solutions of some linear fractional differential equations with variable coefficients

Title:
α-Analytic solutions of some linear fractional differential equations with variable coefficients
Source:
Proceedings of the International Symposium on Analytic Function Theory, Fractional Calculus and Their Applications in honour of Professor H.M. Srivastava on his sixty-fifth birth anniversaryApplied mathematics and computation. 187(1):239-249
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and Mechanics, Belarusian State University, Minsk 220050, Belarus
Departamento de Andlisis Matemático, Universidad de La Laguna, 38271 La Laguna, Islas Canarias, Spain
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18796507
Database:
PASCAL Archive

Further Information

This paper investigates the solutions, around an ordinary point Χ0 ∈ [a, b] for fractional linear differential equations of the form: [Lnα(y)](Χ) = g(Χ,α), where [Lnα(y)] (Χ)=y(nα)(Χ)+Σn-1k=0ak(Χ)y(kα)(Χ) with α∈(0,1]. Here n ∈ N, the real functions g(Χ) and ak(Χ) (k = 0,1,...,n-1) are defined on the interval [a,b], and ynα)(Χ) represents sequential fractional derivatives of order ka of the function y(x). This study is an extension of the corresponding works by Al-Bassam.