Result: α-Analytic solutions of some linear fractional differential equations with variable coefficients
Title:
α-Analytic solutions of some linear fractional differential equations with variable coefficients
Authors:
Source:
Proceedings of the International Symposium on Analytic Function Theory, Fractional Calculus and Their Applications in honour of Professor H.M. Srivastava on his sixty-fifth birth anniversaryApplied mathematics and computation. 187(1):239-249
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Fonctions réelles, Real functions, Equations différentielles, Ordinary differential equations, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse numérique, Numerical analysis, Análisis numérico, Equation différentielle, Differential equation, Ecuación diferencial, Equation linéaire, Linear equation, Ecuación lineal, Fonction réelle, Real function, Función real, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode séquentielle, Sequential method, Método secuencial, 26A33, 26XX, 34XX, 58A10, Caputo derivatives, Linear fractional differential equations with variable coefficients, Riemann-Liouville derivatives, Α-Analytic solutions
Document Type:
Conference
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and Mechanics, Belarusian State University, Minsk 220050, Belarus
Departamento de Andlisis Matemático, Universidad de La Laguna, 38271 La Laguna, Islas Canarias, Spain
Departamento de Andlisis Matemático, Universidad de La Laguna, 38271 La Laguna, Islas Canarias, Spain
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18796507
Database:
PASCAL Archive
Further Information
This paper investigates the solutions, around an ordinary point Χ0 ∈ [a, b] for fractional linear differential equations of the form: [Lnα(y)](Χ) = g(Χ,α), where [Lnα(y)] (Χ)=y(nα)(Χ)+Σn-1k=0ak(Χ)y(kα)(Χ) with α∈(0,1]. Here n ∈ N, the real functions g(Χ) and ak(Χ) (k = 0,1,...,n-1) are defined on the interval [a,b], and ynα)(Χ) represents sequential fractional derivatives of order ka of the function y(x). This study is an extension of the corresponding works by Al-Bassam.