Result: Random dynamics of polynomials and devil's-staircase-like functions in the complex plane

Title:
Random dynamics of polynomials and devil's-staircase-like functions in the complex plane
Authors:
Source:
Proceedings of the International Symposium on Analytic Function Theory, Fractional Calculus and Their Applications in honour of Professor H.M. Srivastava on his sixty-fifth birth anniversaryApplied mathematics and computation. 187(1):489-500
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Théorie des groupes, Group theory, Théorie des groupes et généralisations, Group theory and generalizations, Analyse mathématique, Mathematical analysis, Fonctions de plusieurs variables complexes et espaces analytiques, Several complex variables and analytic spaces, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse numérique, Numerical analysis, Análisis numérico, Convergence uniforme, Uniform convergence, Convergencia uniforme, Ensemble compact, Compact set, Conjunto compacto, Fonction complexe, Complex function, Función compleja, Fonction continue, Continuous function, Función continua, Fonction répartition, Distribution function, Función distribución, Loi probabilité, Probability distribution, Ley probabilidad, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Polynôme, Polynomial, Polinomio, Semigroupe, Semigroup, Semigrupo, Sphère, Sphere, Esfera, Système complexe, Complex system, Sistema complejo, Système dynamique, Dynamical system, Sistema dinámico, 20Mxx, 26A46, 32C15, 32XX, 37F50, 37XX, Ensemble Julia, Julia set, Complex dynamical systems, Devil's-staircase-like function, Polynomial semigroups, Random dynamical systems
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18796536
Database:
PASCAL Archive

Further Information

We consider the dynamics of polynomial semigroups with bounded postcritical set and random dynamics of complex polynomials in the complex plane. A polynomial semigroup G is a semigroup generated by polynomials in one variable with the semigroup operation being functional composition. We show that if the postcritical set of G, that is the closure of the G-orbit of the union of any critical values of any generators of G, is bounded in the complex plane, then the space of components of the Julia set of G (Julia set is the set of points in the Riemann sphere C in which G is not normal) has a total order ≤, where for two compact connected sets K1, K2 in C, K1 < K2 indicates that K1 = K2, or K1 is included in a bounded component of C \K2· Using the above result and combining it with the theory of random dynamics of complex polynomials, we consider the following: Let τ be a Borel probability measure in the space {g ∈ C[z]| deg(g) ≥ 2} with topology induced by the uniform convergence on the Riemann sphere C. We consider the i.i.d. random dynamics in C such that at every step we choose a polynomial according to the distribution τ. Let T∞ (z) be the probability of tending to ∞ ∈ C starting from the initial value z ∈ C and let Gτ be the polynomial semigroup generated by the support of T. Suppose that the support of τ is compact, the postcritical set of Gτ is bounded in the complex plane and the Julia set of Gτis disconnected. Then, we show that (1) in each component U of the complement of the Julia set of Gτ, T∞|u equals a constant Cu, (2) T∞: C→ [0,1] is a continuous function on the whole C, and (3) if J1, J2 are two components of the Julia set of Gτwith J1≤ J2, then maxz∈j1 T∞(z) < minz∈J2 T∞(z). Hence T∞ is similar to the devil's-staircase function.