Result: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research

Title:
Landmark constrained genus zero surface conformal mapping and its application to brain mapping research
Source:
International Conference on Scientific Computing, June 4-8, 2005, Nanjing, ChinaApplied numerical mathematics. 57(5-7):847-858
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, United States
Laboratory ofNeuro Imaging and Brain Research Institute, UCLA School of Medicine, CA 90095-1555, United States
ISSN:
0168-9274
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18796771
Database:
PASCAL Archive

Further Information

In order to compare and integrate brain data more effectively, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be mapped conformally to a sphere. Cortical surface is a genus zero surface. Therefore, conformal mapping offers a convenient method to parameterize cortical surfaces without angular distortion, generating an orthogonal grid on the cortex that locally preserves the metric. Although conformal mapping preserves the local geometry well, the important anatomical features, such as the sulci landmarks, are usually not aligned consistently. To compare cortical surfaces more effectively, it is advantageous to adjust the conformal parameterizations to match consistent anatomical features across subjects. This matching of cortical patterns improves the alignment of data across subjects, although it is more challenging to create a consistent conformal (orthogonal) parameterization of anatomy across subjects when landmarks are constrained to lie at specific locations in the spherical parameter space. Here we describe two methods to accomplish the task. The first approach is based on pursuing an optimal Mobius transformation to minimize the landmark mismatch error. The second approach is based on a new energy functional, to optimize the conformal parameterization of cortical surfaces by using landmarks. Experimental results on a dataset of 40 brain hemispheres showed that the landmark mismatch energy can be significantly reduced while effectively preserving conformality. The key advantage of these conformal parameterization approaches is that any local adjustments of the mapping to match landmarks do not affect the conformality of the mapping significantly. A detailed comparison between the two approaches will be discussed. The first approach can generate a map which is exactly conformal, although the landmark mismatch error is not reduced as effective as the second approach. The second approach can generate a map which significantly reduces the landmark mismatch error, but some conformality will be lost.