Treffer: Exploration of pulse timing for multiple laser hits within a combined heat transfer, phase change, and gas dynamics model for laser ablation

Title:
Exploration of pulse timing for multiple laser hits within a combined heat transfer, phase change, and gas dynamics model for laser ablation
Source:
Proceedings of the Fifth International Conference on Photo-Excited Processes and Applications (5-ICPEPA), Charlottesville, Virginia, USA, 3-7 september, 2006Applied surface science. 253(15):6366-6370
Publisher Information:
Amsterdam: Elsevier Science, 2007.
Publication Year:
2007
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Subject Terms:
General chemistry, physical chemistry, Chimie générale, chimie physique, Crystallography, Cristallographie cristallogenèse, Nanotechnologies, nanostructures, nanoobjects, Nanotechnologies, nanostructures, nanoobjets, Condensed state physics, Physique de l'état condensé, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des fluides, Fluid dynamics, Méthodes de calcul en mécanique des fluides, Computational methods in fluid dynamics, Etat condense: structure, proprietes mecaniques et thermiques, Condensed matter: structure, mechanical and thermal properties, Equations d'état, équilibres de phases et transformations de phases, Equations of state, phase equilibria, and phase transitions, Transformations de phases particulières, Specific phase transitions, Transformations solide-vapeur, Solid-vapor transitions, Etat condense: structure electronique, proprietes electriques, magnetiques et optiques, Condensed matter: electronic structure, electrical, magnetic, and optical properties, Emissions électronique et ionique; phénomènes d'impact, Electron and ion emission by liquids and solids; impact phenomena, Phénomènes d'impact (incluant les spectres d'électrons et la pulvérisation), Impact phenomena (including electron spectra and sputtering), Phénomènes d'impact par faisceau laser, Laser-beam impact phenomena, Carbone, Carbon, Croissance film, Film growth, Modèle dynamique, Dynamic model, Modelo dinámico, Méthode ablation laser, Laser ablation technique, Phase gazeuse, Gas phase, Réaction chimique, Chemical reactions, Simulation, Transfert chaleur, Heat transfer, Transformation phase, Phase transformations, 46.15.-x, 47.11.-j, 64.70.Hz, 79.20.Ds, Carbon ablation, Hertz-Knudsen equation, Laser ablation, Multi-dimensional heat transfer
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical Engineering, University of Akron, Akron, OH 44325-3903, United States
ISSN:
0169-4332
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics of condensed state: electronic structure, electrical, magnetic and optical properties

Physics of condensed state: structure, mechanical and thermal properties

Physics: fluid mechanics
Accession Number:
edscal.18797101
Database:
PASCAL Archive

Weitere Informationen

Laser ablation involves heat transfer, phase changes and/or chemical reactions, and gas dynamics. All three of these processes are tightly coupled with each other. A model has previously been developed to simulate the nanosecond scale laser ablation of carbon. This model has been extended to accommodate longer term simulations and multiple laser pulses. The effects of varying the timing of a second laser pulse by tens of nanoseconds are explored. It is shown that by changing this interval one can control the total mass ablated and the mass transfer rate.