Treffer: A hybrid genetic approach for airborne sensor vehicle routing in real-time reconnaissance missions

Title:
A hybrid genetic approach for airborne sensor vehicle routing in real-time reconnaissance missions
Source:
Sensor management in complex systemsAerospace science and technology. 11(4):317-326
Publisher Information:
Paris: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 25 ref
Original Material:
INIST-CNRS
Subject Terms:
Aeronautics astronautics, Aéronautique, astronautique, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Informatique en physique expérimentale, Computers in experimental physics, Analyse de données: algorithmes et implémentations; gestion de données, Data analysis: algorithms and implementation; data management, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie de l'information, Information theory, Agent logiciel, Software agents, Algorithme génétique, Genetic algorithm, Algoritmo genético, Allocation ressource, Resource allocation, Asignación recurso, Capteur mesure, Measurement sensor, Captador medida, Charge travail, Workload, Carga trabajo, Durée trajet, Travel time, Duración trayecto, Esquive collision, Collision avoidance, Esquiva colisión, Gestion ressources, Resource management, Gestión recursos, Gestion tâche, Task scheduling, Gestión labor, Monitorage, Monitoring, Monitoreo, Planification trajectoire, Path planning, Problème tournée véhicule, Vehicle routing problem, Problema ruta vehículo, Programmation dynamique, Dynamic programming, Programación dinámica, Prospection aéroportée, Airborne prospecting, Aeroprospección, Routage, Routing, Enrutamiento, Réseau capteur, Sensor array, Red sensores, Stratégie recherche, Search strategy, Estrategia investigación, Surveillance, Vigilancia, Système complexe, Complex system, Sistema complejo, Système incertain, Uncertain system, Sistema incierto, Temps parcours, Transit time, Tiempo recorrido, Temps réel, Real time, Tiempo real, Allocation temps, Time allocation, Asignación tiempo, Contrainte temporelle, Temporal constraint, Constreñimiento temporal, Fenêtre temporelle, Time window, Ventana temporal, Airborne sensors, Reconnaissance
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Defence Research Development Canada - Valcartier, 2459 Pie-XI Blvd., North, Québec, PQ, G3J 1X5, Canada
Laval University, Computer Science Department, Quebec, PQ, G1K 7P4, Canada
ISSN:
1270-9638
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Metrology

Telecommunications and information theory
Accession Number:
edscal.18798215
Database:
PASCAL Archive

Weitere Informationen

Past initiatives to address surveillance and reconnaissance mission planning mainly focused on low-level control aspects such as real-time path planning and collision avoidance algorithms in limited environment. However, few efforts have been spent on high-level real-time task allocation. It is believed that automated decision capabilities supporting real-time resource allocation for sensor control and interactions might significantly reduce user workload, focusing attention on alternate tasks and objectives while assigning hard computational tasks to artificial agents. In this paper, we propose a new hybrid genetic algorithm to solve the dynamic vehicle routing problem with time windows, in which a group of airborne sensors are engaged in a reconnaissance mission evolving in a dynamic uncertain environment involving known and unknown targets/threats. In that context, visiting a target may consist in carrying out a collection of subtasks such as search, detect, recognize and confirm suspected targets, discover and confirm new ones. The approach consists in concurrently evolving two populations of solutions to minimize total travel time and temporal constraint violation using genetic operators combining variations of key concepts inspired from routing techniques and search strategies. A least commitment principle in servicing scheduled customers is also exploited to potentially improve solution quality.