Treffer: Operator scheduling strategies in supervisory control of multiple UAVs

Title:
Operator scheduling strategies in supervisory control of multiple UAVs
Source:
Sensor management in complex systemsAerospace science and technology. 11(4):339-348
Publisher Information:
Paris: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Subject Terms:
Aeronautics astronautics, Aéronautique, astronautique, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Informatique en physique expérimentale, Computers in experimental physics, Analyse de données: algorithmes et implémentations; gestion de données, Data analysis: algorithms and implementation; data management, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Automatique théorique. Systèmes, Control theory. Systems, Modélisation et identification, Modelling and identification, Robotique, Robotics, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie de l'information, Information theory, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Capteur mesure, Measurement sensor, Captador medida, Charge travail, Workload, Carga trabajo, Contrainte espace commande, Control constraint, Control constreñido, Engin volant autonome, Unmanned aerial vehicle UAV, Máquina autónoma voleando, Erreur systématique, Bias, Error sistemático, Formation, Formación, Homme, Human, Hombre, Optimisation sous contrainte, Constrained optimization, Optimización con restricción, Opérateur humain, Human operator, Operador humano, Ordonnancement, Scheduling, Reglamento, Recommandation, Recommendation, Recomendación, Risque élevé, High risk, Riesgo alto, Saturation, Saturación, Simulation HIL, Hardware in the loop simulation, Simulación HIL, Supervision, Supervisión, Système aide décision, Decision support system, Sistema ayuda decisíon, Système complexe, Complex system, Sistema complejo, Système incertain, Uncertain system, Sistema incierto, Temps arrivée, Arrival time, Tiempo llegada, Temps minimal, Minimum time, Tiempo mínimo, Temps retard, Delay time, Tiempo retardo, Human supervisory control, Levels of automation, Multiple unmanned aerial vehicles
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Massachusetts Institute of Technology, Humans and Automation Lab, 77 Massachusetts Ave, 33-305, Cambridge, MA 02139, United States
Power Generation Technology, General Electric Energy, United States
ISSN:
1270-9638
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Metrology

Telecommunications and information theory
Accession Number:
edscal.18798217
Database:
PASCAL Archive

Weitere Informationen

The application of network centric operations to time-constrained command and control environments will mean that human operators will be increasingly responsible for multiple simultaneous supervisory control tasks. One such futuristic application will be the control of multiple unmanned aerial vehicles (UAVs) by a single operator. To achieve such performance in complex, time critical, and high risk settings, automated systems will be required both to guarantee rapid system response, as well as manageable workload for operators. Through the development of a simulation test bed for human supervisory control of multiple independent UAVs by a single operator, this paper presents recent efforts to investigate workload mitigation strategies as a function of increasing automation. A human-in-the-loop experiment revealed that under low workload conditions, operators' cognitive strategies were relatively robust across increasing levels of automated decision support. However, when provided with explicit automated recommendations and with the ability to negotiate with external agencies for delays in arrival times for targets, operators inappropriately fixated on the need to globally optimize their schedules. In addition, without explicit visual representation of uncertainty, operators tended to treated all probabilities uniformly. This study also revealed that operators who reached cognitive saturation adapted two very distinct management strategies, which led to varying degrees of success. Lastly, operators with management-by-exception decision support exhibited evidence of automation bias.