Treffer: Structural collapse analysis of framed structures under impact loads using ASI-Gauss finite element method

Title:
Structural collapse analysis of framed structures under impact loads using ASI-Gauss finite element method
Authors:
Source:
Design and analysis of protective structures against impact/impulsive/shock loads (DAPSIL)International journal of impact engineering. 34(9):1500-1516
Publisher Information:
Oxford: Elsevier Science, 2007.
Publication Year:
2007
Physical Description:
print, 9 ref
Original Material:
INIST-CNRS
Subject Terms:
Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Elasticité statique (thermoélasticité...), Static elasticity (thermoelasticity...), Mécanique de la rupture (fissure, fatigue, endommagement...), Fracture mechanics (crack, fatigue, damage...), Analyse structurale, Structural analysis, Análisis estructural, Aéronef, Aircraft, Aeronave, Charge permanente, Dead load, Carga permanente, Choc mécanique, Mechanical shock, Choque mecánico, Conservation énergie, Energy conservation, Conservación energética, Construction à ossature, Frame construction, Construcción esquelética, Construction élevée, High rise building, Construcción elevada, Effondrement, Collapse, Desmoronamiento, Endommagement, Damaging, Deterioración, Essai choc, Impact test, Ensayo choque, Essai traction, Tension test, Ensayo tracción, Formage, Forming, Conformado, Intégration numérique, Numerical integration, Integración numérica, Loi conservation, Conservation law, Ley conservación, Modélisation, Modeling, Modelización, Méthode Gauss, Gauss method, Método Gauss, Méthode élément fini, Finite element method, Método elemento finito, Onde choc, Shock wave, Onda choque, Poteau, Column, Poste, Poutre Timoshenko, Timoshenko beam, Viga Timoshenko, Rupture, Ruptura, ASI-Gauss technique, Finite-element method, Framed structures, Impact load, Member fracture
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Graduate School, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan
Department of Engineering Mechanics and Energy, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan
ISSN:
0734-743X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: solid mechanics
Accession Number:
edscal.18800161
Database:
PASCAL Archive

Weitere Informationen

The main objective of this study is to devise a technique, which, when implemented into finite-element codes, is efficiently applicable to impact collapse analyses of framed structures. In this study, the formerly developed adaptively shifted integration (ASI) technique for the linear Timoshenko beam element is modified into the ASI-Gauss technique by placing the numerical integration points of the two consecutive elements forming an elastically deformed member in such a way that stresses and strains are evaluated at the Gaussian integration points of the two-element member. On comparison with the ASI technique, the ASI-Gauss technique proves its higher accuracy and efficiency in elastic range. Moreover, instead of applying impact loads in the form of nodal forces, we consider the impact phenomenon by means of contacts between the elements involved and the elemental contact algorithm is verified from the point of conservation of energy. Impact analyses considering member fracture with different sets of parameters are performed using a high-rise framed structure and a small aircraft. From the results obtained, we can observe propagation phenomena of impact loads and shock waves. Also, a proper difference in impact damage is obtained by different sets of parameters. The results also indicate that the mass of the aircraft has a stronger influence on impact damage than its velocity. Moreover, soon after impact, tensile stresses are observed in the columns that were compressed by dead loads before impact.