Result: Decoding interleaved Reed-Solomon codes over noisy channels

Title:
Decoding interleaved Reed-Solomon codes over noisy channels
Source:
Automata, languages and programming (ICALP 2003)Theoretical computer science. 379(3):348-360
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Bell Laboratories, Murray Hill, NJ, United States
Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
RSA Laboratories, Bedford, MA, United States
Department of Computer Science, Columbia University, New York, NY, United States
ISSN:
0304-3975
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.18821597
Database:
PASCAL Archive

Further Information

We consider error correction over the Non-Binary Symmetric Channel (NBSC) which is a natural probabilistic extension of the Binary Symmetric Channel (BSC). We propose a new decoding algorithm for interleaved Reed-Solomon codes that attempts to correct all interleaved codewords simultaneously. In particular, interleaved encoding gives rise to multi-dimensional curves and more specifically to a variation of the Polynomial Reconstruction Problem, which we call Simultaneous Polynomial Reconstruction. We present and analyze a novel probabilistic algorithm that solves this problem. Our construction yields a decoding algorithm for interleaved RS codes that allows efficient transmission arbitrarily close to the channel capacity in the NBSC model.