Treffer: Weighted automata and weighted logics
LSV, ENS Cachan & CNRS, 61, Av. du Président Wilson, 94235 Cachan, France
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
Weighted automata are used to describe quantitative properties in various areas such as probabilistic systems, image compression, speech-to-text processing. The behaviour of such an automaton is a mapping, called a formal power series, assigning to each word a weight in some semiring. We generalize Biichi's and Elgot's fundamental theorems to this quantitative setting. We introduce a weighted version of MSO logic and prove that, for commutative semirings, the behaviours of weighted automata are precisely the formal power series definable with particular sentences of our weighted logic. We also consider weighted first-order logic and show that aperiodic series coincide with the first-order definable ones, if the semiring is locally finite, commutative and has some aperiodicity property.