Result: Comparing the size of NFAs with and without ε -transitions
Institut für Informatik, Johann Wolfgang Goethe-Universität, Robert Mayer Strafe 11-15, 60054 Frankfurt am Main, Germany
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
The construction of an e-free nondeterministic finite automaton (NFA) from a given NFA is a basic step in the development of compilers and computer systems. The standard conversion may produce an e-free NFA with up to Ω(n2·|Σ|) transitions for an NFA with n states and alphabet Z. To determine the largest asymptotic gap between the minimal number of transitions of NFAs and their equivalent e-free NFAs has been a longstanding open problem. We show that there exist regular languages Ln that can be recognized by NFAs with 0(n log2 n) transitions, but e-free NFAs need Ω(n2) transitions to accept Ln. Hence the standard conversion cannot be improved drastically. However, Ln requires an alphabet of size n, but we also construct regular languages Kn over (0, 1} with NFAs of size 0(n log2 n), whereas e-free NFAs require size n ·2c·√log2nfor every c < 1/2.