Result: Simulation of squeeze-film damping of microplates actuated by large electrostatic load

Title:
Simulation of squeeze-film damping of microplates actuated by large electrostatic load
Source:
Journal of computational and nonlinear dynamics. 2(3):232-241
Publisher Information:
New York, NY: American Society of Mechanical Engineers, 2007.
Publication Year:
2007
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Techniques, équipements et instruments mécaniques, Mechanical instruments, equipment and techniques, Systèmes et dispositifs micromécaniques, Micromechanical devices and systems, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Elasticité statique (thermoélasticité...), Static elasticity (thermoelasticity...), Mécanique des fluides, Fluid dynamics, Théorie générale, General theory, Actionneur électrostatique, Electrostatic actuators, Dispositif microélectromécanique, Microelectromechanical device, Dispositivo microelectromecánico, Dispositif électrostatique, Electrostatic devices, Effet non linéaire, Non linear effect, Efecto no lineal, Effet pression, Pressure effects, Equation Reynolds, Reynolds equation, Ecuación Reynolds, Equation von Kárman, Von Kárman equation, Ecuación von Kárman, Facteur qualité, Quality factor, Film comprimé, Squeeze film, Película comprimida, Force électrostatique, Electrostatic force, Fuerza electrostática, Fréquence propre, Eigenfrequency, Grande déformation, High strain, Gran deformación, Mode vibration, Vibrational modes, Modèle Bernoulli Euler, Bernoulli Euler model, Modelo Bernoulli Euler, Modélisation, Modelling, Méthode élément fini, Finite element method, Plaque, Plates, Poutre, Beam(mechanics), Viga, Technique perturbation, Perturbation techniques, Tension collage, Pull in voltage, Tensión encolado, Transducteur capacitif, Capacitive transducer, Transductor capacitivo, electrostatic actuation, large deflections, squeeze-film damping, von Kdrmdn plate equations
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Mechanical Engineering Department, State University of New York at Binghamton, Binghamton, NY 13902, United States
Department of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
ISSN:
1555-1415
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Metrology

Physics: fluid mechanics

Physics: solid mechanics
Accession Number:
edscal.18829886
Database:
PASCAL Archive

Further Information

We present a new method for simulating squeeze-film damping of microplates actuated by large electrostatic loads. The method enables the prediction of the quality factors of microplates under a limited range of gas pressures and applied electrostatic loads up to the pull-in instability. The method utilizes the nonlinear Euler-Bernoulli beam equation, the von Kdrmdn plate equations, and the compressible Reynolds equation. The static deflection of the microplate is calculated using the beam model. Analytical expressions are derived for the pressure distribution in terms of the plate mode shapes around the deflected position using perturbation techniques. The static deflection and the analytical expressions are substituted into the plate equations, which are solved using a finite-element method. Several results are presented showing the effect of the pressure and the electrostatic force on the structural mode shapes, the pressure distributions, the natural frequencies, and the quality factors.