Treffer: Modelling nonlinear count time series with local mixtures of poisson autoregressions
Northwestern University, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
A novel class of nonlinear models is studied based on local mixtures of autoregressive Poisson time series. The proposed model has the following construction: at any given time period, there exist a certain number of Poisson regression models, denoted as experts, where the vector of covariates may include lags of the dependent variable. Additionally, the existence of a latent multinomial variable is assumed, whose distribution depends on the same covariates as the experts. The latent variable determines which Poisson regression is observed. This structure is a special case of the mixtures-of-experts class of models, which is considerably flexible in modelling the conditional mean function. A formal treatment of conditions to guarantee the asymptotic normality of the maximum likelihood estimator is presented, under stationarity and nonstationarity. The performance of common model selection criteria in selecting the number of experts is explored via Monte Carlo simulations. Finally, an application to a real data set is presented, in order to illustrate the ability of the proposed structure to flexibly model the conditional distribution function.