Result: Variational approximations in Bayesian model selection for finite mixture distributions
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
Variational methods, which have become popular in the neural computing/machine learning literature, are applied to the Bayesian analysis of mixtures of Gaussian distributions. It is also shown how the deviance information criterion, (DIC), can be extended to these types of model by exploiting the use of variational approximations. The use of variational methods for model selection and the calculation of a DIC are illustrated with real and simulated data. The variational approach allows the simultaneous estimation of the component parameters and the model complexity. It is found that initial selection of a large number of components results in superfluous components being eliminated as the method converges to a solution. This corresponds to an automatic choice of model complexity. The appropriateness of this is reflected in the DIC values.