Treffer: Discrete rotations and symbolic dynamics

Title:
Discrete rotations and symbolic dynamics
Source:
Combinatorics on wordsTheoretical computer science. 380(3):276-285
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Plans d'expériences et configurations, Designs and configurations, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Divers, Miscellaneous, Analyse combinatoire, Combinatorial analysis, Análisis combinatorio, Analyse image, Image analysis, Análisis imagen, Calcul 2 dimensions, Two-dimensional calculations, Caractérisation, Characterization, Caracterización, Codage, Coding, Codificación, Coloration, Coloración, Combinatoire mot, Word combinatorics, Composition, Composicion, Configuration, Configuración, Congrès international, International conference, Congreso internacional, Géométrie discrète, Discrete geometry, Geometría discreta, Image, Imagen, Informatique théorique, Computer theory, Informática teórica, Mot, Word, Palabra, Périodicité, Periodicity, Periodicidad, Rotation, Rotación, Symbole, Symbol, Símbolo, Système discret, Discrete system, Sistema discreto, Système dynamique, Dynamical system, Sistema dinámico, Tore, Torus, Toro, 05Bxx, 05XX, 37B10, 37XX, 52XX, 68R05, 68R15, 68Wxx, Algorithme discret, Dynamique symbolique, Propriété combinatoire, Discrete rotations, Symbolic dynamics, Two-dimensional words
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
LIRMM-UMR 5506 -Univ. MontpellierII, 161 rue Ada, 34392 Montpellier, France
LIP -UMR 5668 -ENS Lyon, 49, Allée d'ltalie, 69364 Lyon, France
ISSN:
0304-3975
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.18831171
Database:
PASCAL Archive

Weitere Informationen

The aim of this paper is to study local configurations issued from discrete rotations. The algorithm of discrete rotations that we consider is the discretized rotation. It simply consists in the composition of a Euclidean rotation with a rounding operation, as studied in [B. Nouvel, E. Rémila, On colorations induced by discrete rotations, in: DGCI, in: LNCS, vol. 2886, 2003, pp. 174-183; B. Nouvel, E. Rémila, Characterization of bijective discretized rotations, in: International Workshop on Combinatorial Images Analysis, 10th International Conference, IWCIA 2004, Auckland, New Zealand, December 1-4, 2004, in: LNCS, vol. 3322, 2004, pp. 248-259; B. Nouvel, E. Rémila, Configurations induced by discrete rotations: Periodicity and quasiperiodicity properties, Discrete Appl. Math. 2-3 (147) (2005) 325-343]. It is possible to encode all the information concerning a discrete rotation as two multidimensional words Cα and C'α that we call configurations. In this paper, we introduce two discrete dynamical systems defined by a Z2-action on the two-dimensional torus that allow us to describe the configurations Cα and C'α via a suitable symbolic coding; we then deduce various combinatorial properties for both families of configurations, and in particular, results concerning densities of symbol occurrence.