Treffer: Discrete rotations and symbolic dynamics
LIP -UMR 5668 -ENS Lyon, 49, Allée d'ltalie, 69364 Lyon, France
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
The aim of this paper is to study local configurations issued from discrete rotations. The algorithm of discrete rotations that we consider is the discretized rotation. It simply consists in the composition of a Euclidean rotation with a rounding operation, as studied in [B. Nouvel, E. Rémila, On colorations induced by discrete rotations, in: DGCI, in: LNCS, vol. 2886, 2003, pp. 174-183; B. Nouvel, E. Rémila, Characterization of bijective discretized rotations, in: International Workshop on Combinatorial Images Analysis, 10th International Conference, IWCIA 2004, Auckland, New Zealand, December 1-4, 2004, in: LNCS, vol. 3322, 2004, pp. 248-259; B. Nouvel, E. Rémila, Configurations induced by discrete rotations: Periodicity and quasiperiodicity properties, Discrete Appl. Math. 2-3 (147) (2005) 325-343]. It is possible to encode all the information concerning a discrete rotation as two multidimensional words Cα and C'α that we call configurations. In this paper, we introduce two discrete dynamical systems defined by a Z2-action on the two-dimensional torus that allow us to describe the configurations Cα and C'α via a suitable symbolic coding; we then deduce various combinatorial properties for both families of configurations, and in particular, results concerning densities of symbol occurrence.