Result: Performance and reliability of ultra-thin oxide nMOSFETs under variable body bias

Title:
Performance and reliability of ultra-thin oxide nMOSFETs under variable body bias
Source:
INFOS 2007: Proceedings of the 15th Biennial Conference on Insulating Films on Semiconductors, June 20-23, 2007, Glyfada Athens, GreeceMicroelectronic engineering. 84(9-10):1947-1950
Publisher Information:
Amsterdam: Elsevier Science, 2007.
Publication Year:
2007
Physical Description:
print, 5 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
DEIS, University of Calabria, Via P. Bucci 41C, 87036, Arcavacata di Rende (CS), Italy
Dept. Electronic Engineering, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
ISSN:
0167-9317
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.18853483
Database:
PASCAL Archive

Further Information

This experimental study investigates the performance and the reliability of nMOSFETs with channel length down to 90 nm and an equivalent oxide thickness of about 1.5 nm under variable body bias. Forward body bias allows to achieve a significant improvement in terms of drive capability especially for low voltage applications, while reverse body bias can be used to reduce the standby power. It is shown that forward body bias improves the lifetime associated with channel hot carrier stress, while it does not alter the time dependent dielectric breakdown process. This work indicates that the combined use of forward and reverse body bias is a powerful approach for extending the scalability of CMOS devices.