Treffer: Integration of gas cluster process for copper interconnects reliability improvement and process impact evaluation on BEOL dielectric materials
Laboratoire des Technologies de la Microélectronique, Grenoble, France
NXP Semiconductors, Crolles, France
Freescale Semiconductor, Crolles, France
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
A new process, based on the interaction between Si and N rich gas cluster and post Cu CMP features surface, was integrated in a multi-level Cu interconnect stack using 65 nm design rules. Using the same integration scheme as stand-alone SiCN dielectric capping, excellent electrical properties were achieved when the process was implemented with a USG layer on top of a porous Ultra-Low K. Furthermore, 3x electromigration time to failure improvement was evidenced, making the approach very promising to address EM performance requirement for the most advanced technology nodes. Moreover, contrary to PE-CVD CuSiN approach, the process does not depend on Cu crystallographic orientation. Finally, when the implantation process is performed on un-capped ULK, a deep N contamination occurs. Therefore, the process must be optimized to preserve the interest of this technique for the most aggressive architectures.