Treffer: Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing

Title:
Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing
Source:
Stabilized, multiscale and multiphysics methodsInternational journal for numerical methods in fluids. 54(6-8):695-706
Publisher Information:
Chichester: Wiley, 2007.
Publication Year:
2007
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Time:
4711
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Meccanica e Aeronautica, Università degli Studi di Roma 'La Sapienza', Via Eudossiana, 18, 00184 Roma, Italy
Departalnento de Ingeneria Mecánica-Electrica, Universidad de Piura, Av. Ramón Mugica 131 Piura, Peru
Mechanica/ Engineering, Rice University-MS 321, 6100 Main Street, Houston, TX 77005, United States
ISSN:
0271-2091
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.18888641
Database:
PASCAL Archive

Weitere Informationen

The YZp shock-capturing technique was introduced recently for use in combination with the streamline-upwind/Petrov-Galerkin formulation of compressible flows in conservation variables. The YZβ shock-capturing parameter is much simpler than an earlier parameter derived from the entropy variables for use in conservation variables. In this paper, we propose to use the YZβ shock-capturing in combination with the variable subgrid scale (V-SGS) formulation of compressible flows in conservation variables. The V-SGS method is based on an approximation of the class of SGS models derived from the Hughes variational multiscale method. We evaluate the performance of the V-SGS and YZβ combination in a number of standard, 2D test problems. Compared to the earlier shock-capturing parameter derived from the entropy variables, in addition to being much simpler, the YZβ shock-capturing parameter yields better shock quality in these test problems.