Result: Modelling of fluid-structure interactions with the space-time finite elements : Arterial fluid mechanics

Title:
Modelling of fluid-structure interactions with the space-time finite elements : Arterial fluid mechanics
Source:
Stabilized, multiscale and multiphysics methodsInternational journal for numerical methods in fluids. 54(6-8):901-922
Publisher Information:
Chichester: Wiley, 2007.
Publication Year:
2007
Physical Description:
print, 63 ref
Original Material:
INIST-CNRS
Subject Terms:
Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Vibration, onde mécanique, stabilité dynamique (aéroélasticité, contrôle vibration...), Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...), Mécanique des fluides, Fluid dynamics, Méthodes de calcul en mécanique des fluides, Computational methods in fluid dynamics, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Biophysique des tissus, organes et organismes, Tissues, organs and organisms biophysics, Biomécanique. Biorhéologie, Biomechanics. Biorheology, Anévrysme, Aneurysm, Aneurisma, Appareil circulatoire pathologie, Cardiovascular disease, Aparato circulatorio patología, Artère cérébrale moyenne, Middle cerebral artery, Arteria cerebral media, Artère, Artery, Arteria, Débit sanguin, Blood flow, Flujo sanguíneo, Hémodynamique, Hemodynamics, Hemodinámica, Interaction fluide structure, Fluid structure interaction, Interacción fluido estructura, Modélisation, Modeling, Modelización, Mécanique fluide numérique, Computational fluid dynamics, Mecánica fluido numérica, Méthode élément fini, Finite element method, Método elemento finito, Simulation numérique, Numerical simulation, Simulación numérica, 8719U, cardiovascular fluid mechanics, cerebral aneurysms, finite elements, fluid-structure interactions, space-time methods
Time:
4640, 4711
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Team for Advanced Flow Simulation and Modeling (T*AFSM), Mechanical Engineering, Rice University -MS 321, 6100 Main Street, Houston, TX 77005, United States
Sections. of Leukocyte Biology and Nutrition, Department of Pediatrics, Baylor College of Medicine. Children's Nutrition Research Center, 1100 Bates, Suite 6014, Houston, TX 77030, United States
ISSN:
0271-2091
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Biophysics of tissues, organs and organisms

Physics: fluid mechanics

Physics: solid mechanics
Accession Number:
edscal.18888651
Database:
PASCAL Archive

Further Information

The stabilized space-time fluid-structure interaction (SSTFSI) techniques developed by the Team for Advanced Flow Simulation and Modeling (T*AFSM) are applied to FSI modelling in arterial fluid mechanics. Modelling of flow in arteries with aneurysm is emphasized. The SSTFSI techniques used are based on the deforming-spatial-domain/stabilized space-time (DSD/SST) formulation and include the enhancements introduced recently by the T*AFSM to increase the scope, accuracy, robustness and efficiency of these techniques. The arterial structures can be modelled with the membrane or continuum elements, both of which are geometrically nonlinear, and the continuum element can be made of linearly elastic or hyperelastic material. Test computations are presented for cerebral and abdominal aortic aneurysms and carotid-artery bifurcation, where the arterial geometries used in the computations are close approximations to the patient-specific image-based data.