Treffer: Random backtracking in backtrack search algorithms for satisfiability
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
This paper proposes the utilization of randomized backtracking within complete backtrack search algorithms for propositional satisfiability (SAT). In recent years, randomization has become pervasive in SAT algorithms. Incomplete algorithms for SAT, for example the ones based on local search, often resort to randomization. Complete algorithms also resort to randomization. These include state-of-the-art backtrack search SAT algorithms that often randomize variable selection heuristics. Moreover, it is plain that the introduction of randomization in other components of backtrack search SAT algorithms can potentially yield new competitive search strategies. As a result, we propose a stochastic backtrack search algorithm for SAT, that randomizes both the variable selection and the backtrack steps of the algorithm. In addition, we relate randomized backtracking with a more general form of backtracking, referred to as unrestricted backtracking. Finally, experimental results for different organizations of randomized backtracking are described and compared, providing empirical evidence that the new search algorithm for SAT is a very competitive approach for solving hard real-world instances.