Treffer: Regular-SAT : A many-valued approach to solving combinatorial problems
IIIA, Artificial Intelligence Research Institute,CSIC, Spanish Council,for Scientific-Research,Campus UAB, 08193 Bellaterra, Spain
Departmentt of Computer Science, Cornell University, Ithaca, NY 14853, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
Regular-SAT is a constraint programming language between CSP and SAT that-by combining many of the good properties of each paradigm-offers a good compromise between performance and expressive power. Its similarity to SAT allows us to define a uniform encoding formalism, to extend existing SAT algorithms to Regular-SAT without incurring excessive overhead in terms of computational cost, and to identify phase transition phenomena in randomly generated instances. On the other hand, Regular-SAT inherits from CSP more compact and natural encodings that maintain more the structure of the original problem. Our experimental results-using a range of benchmark problems-provide evidence that Regular-SAT offers practical computational advantages for solving combinatorial problems.