Treffer: Virtual high performance milling
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mechanical engineering. Mechanical construction. Handling
Physics: solid mechanics
Weitere Informationen
The goal of future manufacturing is to design, test and manufacture parts in a virtual environment before they are manufactured on the shop floor. This paper presents a generalized process simulation and optimization strategy for 2 1/2 axis milling operations to increase Material Removal Rate (MRR) while avoiding machining errors. The process is optimized at two stages. Optimal spindle speed, radial and axial depth of cut are recommended to process planner by considering the chatter, and spindle's torque/power limits. The cutter-part engagement conditions are extracted from CAD system by geometrically processing the NC program and part geometry. Long tool path segments are broken into smaller segments whenever the geometry varies. The spindle speed and feed fields of the NC program are automatically optimized by constraining maximum torque, power, tool deflection and chip load set by the user. The acceleration and speed limits of the machine tool feed drives are considered to prevent frequent variations of the feed unnecessarily. The optimization is experimentally verified by milling a helicopter gear box cover on a high speed, horizontal machining centre.