Treffer: Virtual high performance milling

Title:
Virtual high performance milling
Source:
57th General Assembly of CIRP, Dresden, Germany, August 19-25, 2007CIRP annals. 56(1):81-84
Publisher Information:
Oxford: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 10 ref
Original Material:
INIST-CNRS
Subject Terms:
Mechanical engineering, Génie mécanique, Metallurgy, welding, Métallurgie, soudage, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Vibration, onde mécanique, stabilité dynamique (aéroélasticité, contrôle vibration...), Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...), Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Genie mecanique. Construction mecanique, Mechanical engineering. Machine design, Généralités, General, Transmissions, Drives, Engrenages, Gears, Alimentation machine, Machine feed, Alimentación máquina, Broutage machine, Chatter, Chirrido, Conception assistée, Computer aided design, Concepción asistida, Conception ingénierie, Engineering design, Concepción ingeniería, Défaut fabrication, Manufacturing defect, Defecto fabricación, Etude expérimentale, Experimental study, Estudio experimental, Formation copeau, Chip formation, Formación viruta, Fraisage, Milling, Fresado, Haute performance, High performance, Alto rendimiento, Hélicoptère, Helicopter, Helicóptero, Machine outil, Machine tool, Máquina herramienta, Matériau pour outils, Tool material, Material para herramientas, Optimisation, Optimization, Optimización, Outil coupe, Cutting tool, Herramienta corte, Profondeur pénétration, Penetration depth, Profundidad penetración, Préparation gamme fabrication, Process planning, Preparación serie fabricación, Réalité virtuelle, Virtual reality, Realidad virtual, Trajectoire optimale, Optimal trajectory, Trayectoria óptima, Usinage, Machining, Mecanizado, Vitesse avancement, Penetration rate, Velocidad penetración, Vitesse coupe, Cutting speed, Velocidad corte, Interface copeau outil, Chip tool interface, Interfase herramienta viruta, Virtual
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Manufacturing Automation Laboratory, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
ISSN:
0007-8506
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mechanical engineering. Mechanical construction. Handling

Physics: solid mechanics
Accession Number:
edscal.18979215
Database:
PASCAL Archive

Weitere Informationen

The goal of future manufacturing is to design, test and manufacture parts in a virtual environment before they are manufactured on the shop floor. This paper presents a generalized process simulation and optimization strategy for 2 1/2 axis milling operations to increase Material Removal Rate (MRR) while avoiding machining errors. The process is optimized at two stages. Optimal spindle speed, radial and axial depth of cut are recommended to process planner by considering the chatter, and spindle's torque/power limits. The cutter-part engagement conditions are extracted from CAD system by geometrically processing the NC program and part geometry. Long tool path segments are broken into smaller segments whenever the geometry varies. The spindle speed and feed fields of the NC program are automatically optimized by constraining maximum torque, power, tool deflection and chip load set by the user. The acceleration and speed limits of the machine tool feed drives are considered to prevent frequent variations of the feed unnecessarily. The optimization is experimentally verified by milling a helicopter gear box cover on a high speed, horizontal machining centre.