Treffer: Dynamic phenomena at mode-I crack front in silicon simulated by extended molecular dynamics
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Analytical-solution-controlled molecular dynamics that can simulate atomic-scale phenomena around a crack front has been extended so that it can also simulate phenomena caused dynamically by elastic/plastic waves. The result of the simulation for monocrystalline silicon shows that a quasi-statically opening crack creates voids around the crack front and leaves dimples on the fractured surfaces as in cases of ductile fracture. On the other hand, elastic/plastic waves emitted from around the crack front change the above phenomena such that various surfaces, from smooth to very rough ones, result. A smooth surface is created by a Rayleigh wave that travels along fractured surfaces, creating new surfaces at its wavefront, while a rough surface is made by a chain mechanism wherein a void is created by wave-driven cross slip and this void, in turn, emits new waves which cause voids.