Treffer: Machine learning approach to color constancy
BHSAI/MRMC, Attn: MCMR-ZB-T, Building 363 Miller Dr, Fort Detrick, MD 21792-5012, United States
1508 Ferris Hall, Electrical and Computer Engineering, The University of Tennessee, Knoxville, TN 37996, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
A number of machine learning (ML) techniques have recently been proposed to solve color constancy problem in computer vision. Neural networks (NNs) and support vector regression (SVR) in particular, have been shown to outperform many traditional color constancy algorithms. However, neither neural networks nor SVR were compared to simpler regression tools in those studies. In this article, we present results obtained with a linear technique known as ridge regression (RR) and show that it performs better than NNs, SVR, and gray world (GW) algorithm on the same dataset. We also perform uncertainty analysis for NNs, SVR, and RR using bootstrapping and show that ridge regression and SVR are more consistent than neural networks. The shorter training time and single parameter optimization of the proposed approach provides a potential scope for real time video tracking application.