Result: Modeling, design, and verification for the analog front-end of a MEMS-based parallel scanning-probe storage device
IBM Microelectronics Division, Essex Junction, VT 05452, United States
University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg, Germany
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Metrology
Further Information
We present an integrated analog front-end (AFE) for the read-channel of a parallel scanning-probe storage device. The read/write element is based on an array of microfabricated silicon cantilevers equipped with heating elements to form nanometer-sized indentations in a polymer surface using integral atomic-force microscope (AFM) tips. An accurate cantilever model based on the combination of a thermal/electrical lumped-element model and a behavioral model of the electrostatic/mechanical part are introduced. The behavioral model of the electrostatic/mechanical part is automatically generated from a full finite-element model (FEM). The model is completely implemented in Verilog-A and was used to co-develop the integrated analog front-end circuitry together with the read/write cantilever. The cantilever model and the analog front-end were simulated together and the results were experimentally verified. The approach chosen is well suited for system-level simulation and verification/extraction in a design environment based on standard EDA tools.