Result: Fuzzy component based object detection

Title:
Fuzzy component based object detection
Source:
North American Fuzzy Information Processing Society Annual Conference NAFIPS’2005, June 22-25, Ann Arbor, MIInternational journal of approximate reasoning. 45(3):546-563
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Apprentissage supervisé, Supervised learning, Aprendizaje supervisado, Classification, Clasificación, Composant logiciel, Software component, Componente logicial, Configuration géométrique, Geometrical configuration, Configuración geométrica, Détecteur proximité, Proximity detector, Detector proximidad, Détection objet, Object detection, Eclairement, Illumination, Alumbrado, Faciès, Facies, Inférence, Inference, Inferencia, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Invariant, Invariante, Logique floue, Fuzzy logic, Lógica difusa, Luminance, Luminancia, Modèle agrégé, Aggregate model, Modelo agregado, Modèle géométrique, Geometrical model, Modelo geométrico, Occlusion, Oclusión, Occultation, Ocultación, Orienté objet, Object oriented, Orientado objeto, Posture, Postura, Reconnaissance visage, Face recognition, Règle inférence, Inference rule, Regla inferencia, Système expert, Expert system, Sistema experto, Component based object detection, Face detection, Fuzzy classifier, Fuzzy inference, Human-centric hybrid fuzzy classifier: AdaBoost
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical Engineering and Computer Science, Tulane University, New Orleans LA, United States
Naval Research Lahoratory, Stennis Space Center, MS, United States
ISSN:
0888-613X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.18997629
Database:
PASCAL Archive

Further Information

Component based object detection approaches have been shown to significantly improve object detection performance in adversities such as occlusion, variations in pose, in and out of plane rotation and poor illumination. Even the best object detectors are prone to errors when used in a global object detection scheme (one that uses the whole object as a single entity for detection purpose), due to these problems. We propose a fuzzy approach to object detection that treats an object as a set of constituent components rather than a single entity. The object detection task is completed in two steps. In the first step, candidates for respective components are selected based on their appearance match and handed over to the geometrical configuration classifier. The geometrical configuration classifier is a fuzzy inference engine that selects one candidate for each component such that each candidate is a reasonable match to the corresponding component in terms of appearance and also a good fit for the overall geometrical model. The detected object consists of candidates that are not necessarily the best in terms of appearance match or the closest to the geometrical model in terms of placement. The output is a set of candidates that is an optimal combination satisfying both criteria. We evaluate the technique on a well known face dataset and show that the technique results in detection of most faces in a scale-invariant manner. The technique has been shown to be robust to in-plane rotations and occlusion.