Budapest University of Technology and Economics, Department of Telecommunications and Media Informatics, Magyar tudósok körútja 2, 1117, Budapest, Hungary
Copyright 2007 INIST-CNRS CC BY 4.0 Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19008134
Database:
PASCAL Archive
Further Information
The estimation of the expected traffic loss ratio (workload loss ratio, WLR) is a key issue in provisioning Quality of Service in packet based communication networks. Despite of its importance, the stationary (long run) loss ratio in queueing analysis is usually estimated through other assessable quantities, typically based on the approximates of the buffer overflow probability. In this paper we define a calculus for communication networks which is suitable for workload loss estimation based on the original definition of stationary loss ratio. Our novel calculus is a probabilistic extension of the deterministic network calculus, and takes an envelope approach to describe arrivals and services for the quantification of resource requirements in the network. We introduce the effective w-arrival curve and the effective w-service curve for describing the inputs and the service and we show that the per-node results can be extended to a network of nodes with the definition of the effective network w-service curve.