Treffer: High-speed experimental results for an adhesive-bonded superconducting multi-chip module
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Electronics
Weitere Informationen
We report experimental results for chip-to-chip data communications on a superconducting Multi-Chip-Module (MCM) using a novel fabrication technique. The MCM was produced using a non-conductive adhesive to bond a 5-mm × 5-mm test chip to a 1-cm x 1-cm carrier. To our knowledge, this is the first time this technique was used for MCM assembly at cryogenic temperatures. The module demonstrated superior mechanical stability and protection from its environment during thermal cycling. The MCM also retained its electrical properties after multiple thermal cycling from room temperature to 4 K. We designed test circuits including various digital test benches, as well as analog test structures for bump characteristics. The superconducting circuitry successfully passed single-flux quanta at rates exceeding 50 Gbps. We measured error rates lower than 5 × 10-14 at 36 Gbps using 100-micrometerdiameter In-Sn solder bumps, and lower than 6 x 10-14 at 57 Gbps using 30-micrometer-diameter solder bumps.