Treffer: High-speed experimental results for an adhesive-bonded superconducting multi-chip module

Title:
High-speed experimental results for an adhesive-bonded superconducting multi-chip module
Source:
The 2006 applied superconductivity conference, Seattle, WA, August 27-September 1, 2006IEEE transactions on applied superconductivity. 17(2):971-974
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2007.
Publication Year:
2007
Physical Description:
print, 15 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Electrical engineering, Electrotechnique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Essais, mesure, bruit et fiabilité, Testing, measurement, noise and reliability, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Circuits intégrés, Integrated circuits, Conception. Technologies. Analyse fonctionnement. Essais, Design. Technologies. Operation analysis. Testing, Electrotechnique. Electroenergetique, Electrical engineering. Electrical power engineering, Essais. Fiabilité. Contrôle de qualité, Testing. Reliability. Quality control, Appareillage essai, Testing equipment, Aparato ensayo, Assemblage brasage tendre, Soldered joint, Junta soldada, Assemblage circuit intégré, Integrated circuit bonding, Assemblage collé, Adhesive joint, Ensambladura pegada, Banc essai, Test bench, Banco prueba, Caractéristique électrique, Electrical characteristic, Característica eléctrica, Communication donnée, Data communication, Contact bosse, Solder bump, Contacto con bollos, Cryogénie, Cryogenics, Criogenia, Cycle thermique, Thermal cycle, Ciclo térmico, Etude expérimentale, Experimental study, Estudio experimental, Grande vitesse, High speed, Gran velocidad, Matériau adhésif, Adhesive material, Material adhesivo, Matériau conducteur, Conducting material, Material conductor, Module multipuce, Multichip module, Modulo multipulga, Packaging électronique, Electronic packaging, Packaging electrónico, Protection mécanique, Mechanical protection, Protección mecánica, Puce électronique, Chip, Pulga electrónica, Taux erreur, Error rate, Indice error, Température ambiante, Room temperature, Temperatura ambiente, Température cryogénique, Cryogenic temperature, Temperatura criogénica, Chip-to-chip communications, cryogenic package, multi-chip module, superconducting
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
HYPRES, Inc, Elmsford, NY 10523, United States
ISSN:
1051-8223
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electrical engineering. Electroenergetics

Electronics
Accession Number:
edscal.19010358
Database:
PASCAL Archive

Weitere Informationen

We report experimental results for chip-to-chip data communications on a superconducting Multi-Chip-Module (MCM) using a novel fabrication technique. The MCM was produced using a non-conductive adhesive to bond a 5-mm × 5-mm test chip to a 1-cm x 1-cm carrier. To our knowledge, this is the first time this technique was used for MCM assembly at cryogenic temperatures. The module demonstrated superior mechanical stability and protection from its environment during thermal cycling. The MCM also retained its electrical properties after multiple thermal cycling from room temperature to 4 K. We designed test circuits including various digital test benches, as well as analog test structures for bump characteristics. The superconducting circuitry successfully passed single-flux quanta at rates exceeding 50 Gbps. We measured error rates lower than 5 × 10-14 at 36 Gbps using 100-micrometerdiameter In-Sn solder bumps, and lower than 6 x 10-14 at 57 Gbps using 30-micrometer-diameter solder bumps.