Treffer: On coding labeled trees
Dipartimento di Informatica, Sistemi e Produzione, Università degli Studi di Roma Tor Vergata , Via del Politecnico 1, 00133 Roma, Italy
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
We consider the problem of coding labeled trees by means of strings of node labels. Different codes have been introduced in the literature by Prüfer, Neville, and Deo and Micikevicius. For all of them, we show that both coding and decoding can be reduced to integer (radix) sorting, closing several open problems within a unified framework that can be applied both in a sequential and in a parallel setting. Our sequential coding and decoding schemes require optimal O (n) time when applied to n-node trees, yielding the first linear time decoding algorithm for a code presented by Neville. These schemes can be parallelized on the EREW PRAM model, so as to work in O (log n) time with cost O (n), O (n√log n), or O (n log n), depending on the code and on the operation: in all cases, they either match or improve the performances of the best ad hoc approaches known so far.