Result: On the complexity of working set selection

Title:
On the complexity of working set selection
Source:
Algorithmic learning theoryTheoretical computer science. 382(3):262-279
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 34 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Divers, Miscellaneous, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Algorithme approximation, Approximation algorithm, Algoritmo aproximación, Apprentissage, Learning, Aprendizaje, Approximation, Aproximación, Complexité calcul, Computational complexity, Complejidad computación, Convergence, Convergencia, Coût, Costs, Coste, Informatique théorique, Computer theory, Informática teórica, Maximum, Máximo, Méthode décomposition, Decomposition method, Método descomposición, Méthode optimisation, Optimization method, Método optimización, Optimisation, Optimization, Optimización, Partage, Sharing, Partición, Polynôme, Polynomial, Polinomio, Problème sélection, Selection problem, Problema selección, Procédure, Procedure, Procedimiento, Résolution (math), Solving, Resolución (matemática), Solution optimale, Optimal solution, Solución óptima, Taux convergence, Convergence rate, Relación convergencia, Temps linéaire, Linear time, Tiempo lineal, Temps polynomial, Polynomial time, Tiempo polinomial, Vecteur, Vector, 49J30, 49K30, 49XX, 65B99, 65Kxx, 68T05, 68Wxx, Algorithme polynomial, Computational theory, SVM, Théorie apprentissage algorithmique, Computational learning theory, Théorie apprentissage, Théorie calcul, Théorème convergence, Approximation algorithms, Support vector machines, Working set selection
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Fakultat für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
ISSN:
0304-3975
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.19034090
Database:
PASCAL Archive

Further Information

The decomposition method is currently one of the major methods for solving the convex quadratic optimization problems being associated with Support Vector Machines (SVM-optimization). A key issue in this approach is the policy for working set selection. We would like to find policies that realize (as well as possible) three goals simultaneously: (fast) convergence to an optimal solution, efficient procedures for working set selection, and a high degree of generality (including typical variants of SVM-optimization as special cases). In this paper, we study a general policy for working set selection that has been proposed in [Nikolas List, Hans Ulrich Simon, A general convergence theorem for the decomposition method, in: Proceedings of the 17th Annual Conference on Computational Learning Theory, 2004, pp. 363-377] and further analyzed in [Nikolas List, Hans Ulrich Simon, General polynomial time decomposition algorithms, in: Proceedings of the 17th Annual Conference on Computational Learning Theory, 2005, pp. 308-322]. It is known that it efficiently approaches feasible solutions with minimum cost for any convex quadratic optimization problem. Here, we investigate its computational complexity when it is used for SVM-optimization. It turns out that, for a variable size of the working set, the general policy poses an NP-hard working set selection problem. But a slight variation of it (sharing the convergence properties with the original policy) can be solved in polynomial time. For working sets of fixed size 2, the situation is even better. In this case, the general policy coincides with the rate certifying pair approach (introduced by Hush and Scovel). We show that maximum rate certifying pairs can be found in linear time, which leads to a quite efficient decomposition method with a polynomial convergence rate for SVM-optimization.