Result: Each maximal planar graph with exactly two separating triangles is Hamiltonian

Title:
Each maximal planar graph with exactly two separating triangles is Hamiltonian
Authors:
Source:
3rd Cologne/Twente Workshop on Graphs and Combinatorial OptimizationDiscrete applied mathematics. 155(14):1833-1836
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 6 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics-C, RWTH Aachen University, 52056 Aachen, Germany
ISSN:
0166-218X
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.19046564
Database:
PASCAL Archive

Further Information

A classical result ofWhitney states that each maximal planar graph without separating triangles is Hamiltonian, where a separating triangle is a triangle whose removal separates the graph. Chen [Any maximal planar graph with only one separating triangle is Hamiltonian J. Combin. Optim. 7 (2003) 79-86] proved that any maximal planar graph with only one separating triangle is still Hamiltonian. In this paper, it is shown that the conclusion of Whitney's Theorem still holds if there are exactly two separating triangles.