Treffer: Path-kipas Ramsey numbers

Title:
Path-kipas Ramsey numbers
Source:
3rd Cologne/Twente Workshop on Graphs and Combinatorial OptimizationDiscrete applied mathematics. 155(14):1878-1884
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 10 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
Department of Computer Science, Durham University, South Road, Durham DHI 3LE, United Kingdom
Center for Combinatorics, Nankai University, Tianjin 300071, China
ISSN:
0166-218X
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.19046569
Database:
PASCAL Archive

Weitere Informationen

For two given graphs F and H, the Ramsey number R(F, H) is the smallest positive integer p such that for every graph G on p vertices the following holds: either G contains F as a subgraph or the complement of G contains H as a subgraph. In this paper, we study the Ramsey numbers R(Pn, Km), where Pn is a path on n vertices and Km is the graph obtained from the join of Kl and Pm. We determine the exact values of R(Pn, Km) for the following values of n and m: 1 ≤n≤5 and m≥3; n≥6 and (m is odd, 3≤m≤2n - 1) or (m is even, 4≤m≤n + 1); 6≤n ≤ 7 and m = 2n - 2 or m ≥ 2n; n ≥ 8 and m = 2n - 2 or m = 2n or (q · n - 2q + 1≤m≤q · n - q + 2 with 3 ≤q≤n - 5) or m≥(n - 3)2; odd n≥9 and (q · n - 3q + 1 ≤ m ≤q · n - 2q with 3 < q < (n - 3)/2) or(q·n-q-n+4≤m≤q·n-2q with (n - 1 )/2≤q≤n-4). Moreover, we give lower bounds and upper bounds for R(Pn, Km) for the other values of m and n.