Treffer: On powers of graphs of bounded NLC-width (Clique-width)

Title:
On powers of graphs of bounded NLC-width (Clique-width)
Source:
3rd Cologne/Twente Workshop on Graphs and Combinatorial OptimizationDiscrete applied mathematics. 155(14):1885-1893
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Faculty of Applied Mathematics, AGH -University of Science and Technology, Cracow, Poland
LIFO -Université d'Orléans, BP 6759, 45067, France
ISSN:
0166-218X
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.19046570
Database:
PASCAL Archive

Weitere Informationen

Given a graph G, the graph Gl has the same vertex set and two vertices are adjacent in Gl if and only if they are at distance at most l in G. The l-coloring problem consists in finding an optimal vertex coloring of the graph Gl, where G is the input graph. We show that, for any fixed value of l, the l-coloring problem is polynomial when restricted to graphs of bounded NLC-width (or clique-width), if an expression of the graph is also part of the input. We also prove that the NLC-width of Gl is at most 2(1 + 1)nlcw(G).