Treffer: The $-calculus process algebra for problem solving : A paradigmatic shift in handling hard computational problems

Title:
The $-calculus process algebra for problem solving : A paradigmatic shift in handling hard computational problems
Authors:
Source:
Complexity of algorithms and computationsTheoretical computer science. 383(2-3):200-243
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 73 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Automates. Machines abstraites. Machines de turing, Automata. Abstract machines. Turing machines, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Divers, Miscellaneous, Intelligence artificielle, Artificial intelligence, Résolution de problèmes, jeux, Problem solving, game playing, Algorithme recherche, Search algorithm, Algoritmo búsqueda, Algèbre processus, Process algebra, Algebra proceso, Automatique, Automatic, Automático, Classification, Clasificación, Complétude, Completeness, Completitud, Condition suffisante, Sufficient condition, Condición suficiente, Coût, Costs, Coste, Décalage, Shift, Decalaje, Implémentation, Implementation, Implementación, Indécidabilité, Undecidability, Indecidibilidad, Informatique théorique, Computer theory, Informática teórica, Machine Turing, Turing machine, Máquina Turing, Méthode optimisation, Optimization method, Método optimización, Optimisation, Optimization, Optimización, Problème recherche, Search problem, Problema investigación, Résolution (math), Solving, Resolución (matemática), Résolution problème, Problem solving, Resolución problema, Simulation, Simulación, Sémantique, Semantics, Semántica, 49XX, 65Kxx, 68Q05, 68Q55, 68Q85, 68T20, 68Wxx, Intractabilité, Modèle calcul, Problem solving; Process algebras; Anytime algorithms; SuperTuring models of computation; Bounded rational agents; $-calculus; Intractability; Undecidability; Completeness; Optimality; Search optimality, Total optimality
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
University of Massachusetts Dartmouth, Computer and Information Science Department, 285 Old Westport Road, North Dartmouth, MA 02747-2300, United States
ISSN:
0304-3975
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19061046
Database:
PASCAL Archive

Weitere Informationen

The $-calculus is the extension of the π-calculus, built around the central notion of cost and allowing infinity in its operators. We propose the $-calculus as a more complete model for problem solving to provide a support to handle intractability and undecidability. It goes beyond the Turing Machine model. We define the semantics of the $-calculus using a novel optimization method (the kΩ-optimization), which approximates a nonexisting universal search algorithm and allows the simulation of many other search methods. In particular, the notion of total optimality has been utilized to provide an automatic way to deal with intractability of problem solving by optimizing together the quality of solutions and search costs. The sufficient conditions needed for completeness, optimality and total optimality of problem solving search are defined. A very flexible classification scheme of problem solving methods into easy, hard and solvable in the limit classes has been proposed. In particular, the third class deals with non-recursive solutions of undecidable problems. The approach is illustrated by solutions of some intractable and undecidable problems. We also briefly overview two possible implementations of the $-calculus.