Treffer: Support vector machine with external recurrences for modeling dynamic cerebral autoregulation
Medical Physics Group, Department of Cardiovascular Sciences, University of Leicester, Leicester Royal Infirmary, Leicester LEI 5WW, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Support Vector Machines (SVM) have been applied extensively to classification and regression problems, but there are few solutions proposed for problems involving time-series. To evaluate their potential, a problem of difficult solution in the field of biological signal modeling has been chosen, namely the characterization of the cerebral blood flow autoregulation system, by means of dynamic models of the pressure-flow relationship. The results show a superiority of the SVMs, with 5% better correlation than the neural network models and 18% better than linear systems. In addition, SVMs produce an index for measuring the quality of the autoregulation system which is more stable than indices obtained with other methods. This has a clear clinical advantage.