Result: Adapting compilation techniques to enhance the packing of instructions into registers
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
The architectural design of embedded systems is becoming increasingly idiosyncratic to meet varying constraints regarding energy consumption, code size, and execution time. Traditional compiler optimizations are often tuned for improving general architectural constraints, yet these heuristics may not be as beneficial to less conventional designs. Instruction packing is a recently developed compiler/architectural approach for reducing energy consumption, code size, and execution time by placing the frequently occurring instructions into an Instruction Register File (IRF). Multiple IRF instructions are made accessible via special packed instruction formats. This paper presents the design and analysis of a compilation framework and its associated optimizations for improving the efficiency pf instruction packing. We show that several new heuristics can be developed for IRF promotion, instruction selection, register re-assignment and instruction scheduling, leading to significant reductions in energy consumption, code size, and/or execution time when compared to results using a standard optimizing compiler targeting the IRF.