Treffer: Probabilistic arithmetic and energy efficient embedded signal processing

Title:
Probabilistic arithmetic and energy efficient embedded signal processing
Source:
CASES 2006 (International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, October 22-25, 2006, Seoul, Korea, embedded systems week 2006). :158-168
Publisher Information:
New York NY: ACM Press, 2006.
Publication Year:
2006
Physical Description:
print, 28 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Traitement des langages et microprogrammation, Language processing and microprogramming, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Additionneur, Adder, Adicionador, Approche déterministe, Deterministic approach, Enfoque determinista, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Arithmétique, Arithmetics, Aritmética, Calculateur embarqué, Boarded computer, Calculador embarque, Compilateur, Compiler, Compilador, Economies d'énergie, Energy savings, Ahorros energía, Image floue, Blurred image, Imagen borrosa, Modélisation, Modeling, Modelización, Multiplicateur, Multiplier, Multiplicador, Méthode énergétique, Energy method, Método energético, Radar ouverture synthétique, Synthetic aperture radar, Radar abertura sintética, Rapport signal bruit, Signal to noise ratio, Relación señal ruido, Reconstruction image, Image reconstruction, Reconstrucción imagen, Technologie MOS complémentaire, Complementary MOS technology, Tecnología MOS complementario, Technologie MOS, MOS technology, Tecnología MOS, Tension électrique, Voltage, Voltaje, Traitement signal, Signal processing, Procesamiento señal, Transformation Fourier rapide, Fast Fourier transformation, Transformación Fourier rápida
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
CREST, School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia 30332-0250, United States
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19105492
Database:
PASCAL Archive

Weitere Informationen

Probabilistic arithmetic, where the ith output bit of addition and multiplication is correct with a probability pi, is shown to be a vehicle for realizing extremely energy-efficient, embedded computing. Specifically, probabilistic adders and multipliers, realized using elements such as gates that are in turn probabilistic, are shown to form a natural basis for primitives in the signal processing (DSP) domain. In this paper, we show that probabilistic arithmetic can be used to compute the FFT in an extremely energy-efficient manner, yielding energy savings of over 5.6X in the context of the widely used synthetic aperture radar (SAR) application [1]. Our results are derived using novel probabilistic CMOS (PC-MOS) technology, characterized and applied in the past to realize ultra-efficient architectures for probabilistic applications [2, 3, 4]. When applied to the DSP domain, the resulting error in the output of a probabilistic arithmetic primitive, such as an adder for example, manifests as degradation in the signal-to-noise ratio (SNR) of the SAR image that is reconstructed through the FFT algorithm. In return for this degradation that is enabled by our probabilistic arithmetic primitives - degradation visually indistinguishable from an image reconstructed using conventional deterministic approaches - significant energy savings and performance gains are shown to be possible per unit of SNR degradation. These savings stem from a novel method of voltage scaling, which we refer to as biased voltage scaling (or Bivos), that is the major technical innovation on which our probabilistic designs are based.