Treffer: Architecture and circuit techniques for low-throughput, energy-constrained systems across technology generations

Title:
Architecture and circuit techniques for low-throughput, energy-constrained systems across technology generations
Source:
CASES 2006 (International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, October 22-25, 2006, Seoul, Korea, embedded systems week 2006). :368-378
Publisher Information:
New York NY: ACM Press, 2006.
Publication Year:
2006
Physical Description:
print, 32 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Traitement des langages et microprogrammation, Language processing and microprogramming, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Architecture circuit, Circuit architecture, Arquitectura circuito, Basse énergie, Low energy, Baja energía, Calculateur embarqué, Boarded computer, Calculador embarque, Caractéristique fonctionnement, Performance characteristic, Característica funcionamiento, Charge travail, Workload, Carga trabajo, Compilateur, Compiler, Compilador, Consommation énergie électrique, Power consumption, Consommation énergie, Energy consumption, Consumo energía, Durabilité, Durability, Durabilidad, Durée vie, Lifetime, Tiempo vida, Erreur systématique, Bias, Error sistemático, Méthode adaptative, Adaptive method, Método adaptativo, Nanotechnologie, Nanotechnology, Nanotecnología, Préparation gamme fabrication, Process planning, Preparación serie fabricación, Réseau capteur, Sensor array, Red sensores, Technologie MOS complémentaire, Complementary MOS technology, Tecnología MOS complementario, Technologie avancée, Advanced technology, Tecnología avanzada, Tension électrique, Voltage, Voltaje, Réseau sans fil, Wireless network, Red sin hilo, Temps inoccupation, Idle time, Tiempo desocupación
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Division of Engineering and Applied Sciences, Harvard University, Cambridge MA, 02138, United States
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19105512
Database:
PASCAL Archive

Weitere Informationen

Rising interest in the applications of wireless sensor networks has spurred research in the development of computing systems for low-throughput, energy-constrained applications. Unlike traditional performance oriented applications, sensor network nodes are primarily constrained by operation lifetime, which is limited by power consumption. Advanced CMOS process technologies provide ever increasing transistor density and improved performance characteristics. However, shrinking feature size and decreasing threshold voltages also lead to significant increases in leakage current, which is especially troublesome for applications with significant idle times. This work investigates tradeoffs between leakage and active power for low-throughput applications. We study these issues across a range of process technologies on a computing architecture that provides explicit support for fine-grain leakage-control techniques such as Vdd-gating and adaptive body bias. We present a methodology for selecting design parameters, including choice of process technology, that makes the optimal tradeoff between active power and leakage power for a given workload. Our results show that leakage power will dominate the selection of process technology, and architectures that support advanced leakage control techniques at the circuit level will be essential. We argue that without advanced low-power architectures future nano-scale process technologies will not be suited for sensor network applications.