Result: On the bounded-hop MST problem on random Euclidean instances

Title:
On the bounded-hop MST problem on random Euclidean instances
Source:
Structural information and communication complexity (SIROCCO 2005)Theoretical computer science. 384(2-3):161-167
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 23 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata, Italy
Dipartimento di Informatica, Università degli Studi di Roma La Sapienza, Italy
ISSN:
0304-3975
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.19109041
Database:
PASCAL Archive

Further Information

The d-DIM h-HOPS MST problem is defined as follows: given a set S of points in the d-dimensional Euclidean space and s ∈ S, find a minimum-cost spanning tree for S rooted at s with height at most h. We investigate the problem for any constant h and d > 0. We prove the first nontrivial lower bound on the solution cost for almost all Euclidean instances (i.e. the lower bound holds with high probability). Then we introduce an easy-to-implement, fast divide et impera heuristic and we prove that its solution cost matches the lower bound.