Result: Agreement in synchronous networks with ubiquitous faults

Title:
Agreement in synchronous networks with ubiquitous faults
Source:
Structural information and communication complexity (SIROCCO 2005)Theoretical computer science. 384(2-3):232-249
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 36 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Logique mathématique, fondements, théorie des ensembles, Mathematical logic, foundations, set theory, Logique et fondements, Logic and foundations, Récursivité, Recursion theory, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Recherche information. Graphe, Information retrieval. Graph, Divers, Miscellaneous, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Anneau, Ring, Anillo, Calculabilité, Computability, Calculabilidad, Communication, Comunicación, Connectivité graphe, Graph connectivity, Conectividad grafo, Dynamique, Dynamics, Dinámica, Défaillance, Failures, Fallo, Echec, Failure, Fracaso, Expérience, Experience, Experiencia, Graphe complet, Complete graph, Grafo completo, Hypercube, Hipercubo, Informatique théorique, Computer theory, Informática teórica, Lien, Link, Vínculo, Phénomène transitoire, Transients, Fenómeno transitorio, Processeur, Processor, Procesador, Réseau, Network, Red, Synchrone, Synchronous, Sincrónico, Système réparti, Distributed system, Sistema repartido, Topologie circuit, Network topology, Transmission, Transmisión, 03Dxx, 68M14, 68R10, Possibilité, Système communication, Système synchrone, Agreement, Arbitrary network topology, Bivalency argument, Dynamic faults, Limits to computability, Majority, Mobile faults, Synchronous systems, Theory of distributed computation, Transmission failure model
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
School of Computer Science, Carleton University, Ottawa, Canada
Institute for Theoretical Informatics, ETH Zentrum, Zurich, Switzerland
ISSN:
0304-3975
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.19109046
Database:
PASCAL Archive

Further Information

In this paper we are interested in synchronous distributed systems subject to transient and ubiquitous failures. This includes systems where failures will occur on any communication link, systems where every processor will experience at one time or another send or receive failure, etc., and, following a failure, normal functioning resuming after a finite time. Notice that these cases cannot be handled by the traditional component failure models. The model we use is the communication failure model, also called the transmission failure or dynamic faults or mobile faults model. Using this model, we study the fundamental problem of agreement in synchronous networks of arbitrary topology with ubiquitous faults. We establish bounds on the number of dynamic faults that make any non-trivial form of agreement (even strong majority) impossible; in turn, these bounds express connectivity requirements that must be met to achieve any meaningful form of agreement. We also provide, constructively, bounds on the number of dynamic faults in spite of which any non-trivial form of agreement (even unanimity) is possible. These bounds are shown to be tight for a large class of networks, which includes hypercubes, toruses, rings, and complete graphs; incidentally, we close the existing gap between possibility and impossibility of non-trivial agreement in complete graphs in the presence of dynamic Byzantine faults. None of these results is derivable in the component failure models; in particular, all our possibility results hold in situations for which those models indicate impossibility.