Treffer: Improved error reporting for software that uses black-box components

Title:
Improved error reporting for software that uses black-box components
Source:
PLDI'07 Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design & Implementation, June 10-13, 2007, San Diego, CAACM SIGPLAN notices. 42(6):101-111
Publisher Information:
Broadway, NY: ACM, 2007.
Publication Year:
2007
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Langages de programmation, Programming languages, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Systèmes d'information. Bases de données, Information systems. Data bases, Intelligence artificielle, Artificial intelligence, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Analyse fonctionnelle, Functional analysis, Análisis funcional, Classification, Clasificación, Composant logiciel, Software component, Componente logicial, Documentation, Documentación, Editeur texte, Text editor, Editor texto, Envoi message, Message passing, Estimation erreur, Error estimation, Estimación error, Exécution programme, Program execution, Ejecución programa, Fiabilité, Reliability, Fiabilidad, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Langage programmation, Programming language, Lenguaje programación, Latex, Látex, Monitorage, Monitoring, Monitoreo, Moteur recherche, Search engine, Buscador, Plus proche voisin, Nearest neighbour, Vecino más cercano, Problème recherche, Search problem, Problema investigación, Surveillance, Vigilancia, Système Linux, Linux system, Sistema linux, Système UNIX, UNIX system, Sistema UNIX, Error report. Profiling, Machine learning, Management, Software support
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Sciences The University of Texas at Austin, United States
ISSN:
1523-2867
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19110777
Database:
PASCAL Archive

Weitere Informationen

An error occurs when software cannot complete a requested action as a result of some problem with its input, configuration, or environment. A high-quality error report allows a user to understand and correct the problem. Unfortunately, the quality of error reports has been decreasing as software becomes more complex and layered. End-users take the cryptic error messages given to them by programs and struggle to fix their problems using search engines and support websites. Developers cannot improve their error messages when they receive an ambiguous or otherwise insufficient error indicator from a black-box software component. We introduce Clarify, a system that improves error reporting by classifying application behavior. Clarify uses minimally invasive monitoring to generate a behavior profile, which is a summary of the program's execution history. A machine learning classifier uses the behavior profile to classify the application's behavior, thereby enabling a more precise error report than the output of the application itself. We evaluate a prototype Clarify system on ambiguous error messages generated by large, modem applications like gcc, LaTeX, and the Linux kernel. For a performance cost of less than 1% on user applications and 4.7% on the Linux kernel, the prototype correctly disambiguates at least 85% of application behaviors that result in ambiguous error reports. This accuracy does not degrade significantly with more behaviors: a Clarify classifier for 81 LaTeX error messages is at most 2.5% less accurate than a classifier for 27 LaTeX error messages. Finally, we show that without any human effort to build a classifier, Clarify can provide nearest-neighbor software support, where users who experience a problem are told about 5 other users who might have had the same problem. On average 2.3 of the 5 users that Clarify identifies have experienced the same problem.